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J.  Phys. A: Math. Gen. 21 (1988) 4487-4500. Printed in the U K  

An sl(4, R) Lie algebraic treatment of the first family of 
Poschl-Teller potentials 

C Quesnet 
Service de Physique Thtorique et Mathtmatique, C P  229, Universitt Libre de Bruxelles, 
Bd du Triomphe, B1050 Brussels, Belgium 

Received 28 June 1988 

Abstract. An sI(4, R) dynamical potential algebra, containing the so(4) potential algebra, 
is constructed for the two-parameter Poschl-Teller potentials of the first kind. For this 
purpose, the relation between the Wigner rotation matrices and the solutions of the first 
Poschl-Teller equation is used. Explicit expressions are given for the sI(4, W) generators, 
as well as for their action on the normalised solutions. All the Hamiltonian eigenstates, 
corresponding to the family of potentials with quantised potential strengths ( m ’ ,  m )  differing 
by integers, are proved to belong to a single sl(4, R) unitary irreducible representation of 
the ladder series. For integral values of m‘ and m, the latter is T’l”dd(O, 0; g), while, for 
half-integral values, it is Tiadd(& 4; v), where 7 is some real parameter. Both irreducible 
representations are also shown to be characterised by generalised Young pattern labels 
[pqrO] ,  where p = -2 -fig, and 9 = r = 0. 

1. Introduction 

Group theoretical methods based upon dynamical (invariance or non-invariance) 
algebras have been successfully used in various quantum mechanical problems, such 
as the harmonic oscillator and Coulomb ones (Wybourne 1974 and references therein). 
Following the ideas introduced by Gell-Mann in particle physics (Dothan et a1 1965), 
by a dynamical non-invariance algebra one means a Lie algebra such that the Hamil- 
tonian of the system under consideration can be expressed as a function of its generators. 
All the Hamiltonian eigenstates then fall into one (or at most a few) irreducible 
representation (irrep) of the algebra, while the generators of the latter connect together 
the eigenstates. 

Recently, a second type of non-invariance algebras, called potential algebras, was 
introduced in the study of the Morse potential and of a one-parameter Poschl-Teller 
potential of the second kind (Alhassid et a1 1983, 1986, Frank and Wolf 1984). These 
algebras are such that their irrep carrier spaces contain states with the same energy, 
but corresponding to different quantised potential strengths. The Hamiltonian of the 
potential family is then essentially the Casimir operator of the algebra. Later on, 
potential algebras were also found for the two-parameter Poschl-Teller potentials of 
the first and second kinds, and for the Rosen-Morse and Eckart potentials (Frank and 
Wolf 1985, Barut et a1 1987a, b). 
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In the cases of the Morse potential and of a one-parameter Poschl-Teller potential 
of the second kind, a third type of non-invariance algebras, combining features of 
both the dynamical and potential ones, was considered (Alhassid et a1 1983). Such 
more general algebras, whose generators can connect together both states with the 
same potential strength but different energies, and states with the same energy but 
different quantised potential strengths (as well as states with different potential strengths 
and energies), may be called dynamical potential algebras. 

An interesting question is whether a dynamical potential algebra can be constructed 
for the other exactly solvable one-dimensional problems for which a potential algebra 
was shown to exist. In the conclusion of their papers on the two-parameter Poschl- 
Teller, Rosen-Morse, and Eckart potentials, Barut et a1 (1987a, b) answer this question 
positively and assert that so(4,2) is the searched-for algebra. 

The purpose of the present paper is to critically examine this statement. For the 
sake of demonstration, restricting ourselves to the first family of Poschl-Teller poten- 
tials, we shall prove that the so(4,2) algebra, containing its so(4) potential algebra, 
does not fulfil the conditions required for a dynamical potential algebra, and we shall 
propose sl(4, R) as an alternative choice. 

In Q 2, we review the relation between the solutions of the first Poschl-Teller 
equation and the Wigner rotation matrices. In 0 3, we use this connection to obtain 
the so(4) potential algebra of the Poschl-Teller potentials, and show that so(4,2) is 
not suitable as a dynamical potential algebra. In 0 4, we build the sl(4, R) dynamical 
algebra of the rotation matrices, study its irreps, and then combine these results with 
those of Q 2 to prove that sl(4, R) is a dynamical potential algebra for the first family 
of Poschl-Teller potentials, and to give explicit expressions for its generators and for 
their action on the wavefunctions. Finally, § 5 contains the conclusion. 

2. The solutions of the first Poschl-Teller equation in terms of rotation matrices 

The first Poschl-Teller equation (Poschl and Teller 1933) is 

K , h > l  (2.1) 

where a defines the range of the variable x ( x  E [ 0 ,  n/2a]) ,  K and A are two strength 
parameters, and n E N  labels the eigenvalues E, and the wavefunctions (Cln(x). It is 
convenient to replace K and A by m' and m, defined by 

K = m'+ m +; ~ = m ' - m + f  (2.2) 

and to write the wavefunctions as $'n"'"'(x). The condition K ,  A > 1 imposes the 
following restriction on m' and m:  

m'> /mi +f. (2.3) 

Following the analysis of Barut et a1 (1987a), let us set 

x = (n-P)/2a P E ro, TI 
E, = 2h2a2A,/M 

(2.4) 

(2.5) 

and 



First family of Poschl- Teller potentials 4489 

wherej will be defined below in terms of m‘ and n. Equation (2.1) is then transformed 
into the following equation: 

[-dip-cot p do + ( m’2+ m2-2m’m cos P )  cosec2 p -A,  +~]p!,””’”(P) = 0. (2.7) 

The latter coincides with the differential equation satisfied by the P-dependent part 
dJ, , ( P )  of the Wigner rotation matrices (Biedenharn and Louck 1981), provided that 
A, = ( j + f ) 2 ,  where j is integral or half-integral, and j- lm’l , j- lml E N .  From (2.2) 
and (2.3), these conditions imply that K and A must be half-integral, and that 

j = m ’ + n  n E N .  (2.8) 

A, = (m’ + n + 4)’ = a( K + A + 2 n ) 2  

p(m n , m )  ( P I  = d.’, m ( P ) *  

Hence, the eigenvalues can be written in dimensionless units as 

n E N. (2.9) 

(2.10) 

The corresponding normalised wavefunctions are given by equation (2.6), where 

By introducing an additional dependence on two auxiliary angular variables a, y E 

[0,257) (Barut et a1 1987a), the wavefunctions (2.6) are transformed into the extended 
wavefunctions 

w!,”’ ~“’(x, a, y )  = (257)-’ exp(im’a)+Lm “’(x) exp(imy) 

= [(2j+ l ) a / 4 ~ * ] ” ~ ( s i n  ~)l’~~;lm*,,,(a, p, y )  (2.11) 

where D’, m(a, P, y )  is a rotation matrix element written in terms of Euler angles 
(Biedenharn and Louck 1981). Since, for fixed j ,  the functions DCm(a, P, y )  form a 
basis for an so(4) irrep, the same is true for the functions WLm,m) (x ,  a, y ) .  As first 
shown by Barut et a1 (1987a), so(4) is therefore a potential algebra for the first family 
of Poschl-Teller potentials. 

Before proceeding to construct this potential algebra in the next section, an 
important property, left unstressed by Barut et a1 (1987a), is worth emphasising. From 
(2.3), it indeed follows that there is no one-to-one correspondence between the functions 
d’, m ( P ) ,  - j S  m’, m S j ,  and the Poschl-Teller potential wavefunctions $ ! , m p m ) ( ~ ) ,  nor 
between the complex conjugate rotation matrix elements D’,* ,,,( a, P, y ) ,  - j  s m’,  m sj, 
and the extended wavefunctions W i m  3 m ) ( ~ ,  a, y ) .  

To restore bijectiveness, we may try to enlarge the family of Poschl-Teller potentials. 
From (2.1), we note that the four sets of parameters ( K ,  A ) ,  ( K ,  1 - A ) ,  (1 - K ,  A )  and 
(1 - K ,  1 -A)-or (m’,  m ) ,  (m,  m’), (-m, -m‘) and (-m’, -m)-correspond to the same 
potential. Hence, we may extend the range of definition of K and A by considering 
the values ( K  7 1, A < 0), ( K  <O, A > 1) and ( K ,  A < 0), in addition to ( K ,  A > 1). Such 
values of K and A respectively correspond to values of m‘ and m satisfying the conditions 
m > lm’l++, m < - Im’l-f, m‘< - lml - f ,  and (2.3). However, owing to well known 
symmetry properties of d ’ , , ( P )  (Biedenharn and Louck 1981), the three sets of 
functions resulting from this extension are but replicas of the set of wavefunctions 
(2.6), namely 

*Lm , m )  ( X ) = ( - l ) m - m * ( , m , m ) ( X ) = ~ j ; m , - m ) ( X ) = ( - l ) m - m ~ l ; ” - m ) ( x ) .  (2.12) 

The values K = and A = f, corresponding to m’ = -m and m‘ = m respectively, do 
not fulfil the above-mentioned conditions. For such parameter values, it can be easily 
seen that a solution of the Poschl-Teller equation, by the non-algebraic method 
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previously used in the case K ,  A > 1 (Fliigge 1971), cannot be obtained. This is not 
surprising since, for K = 4 ( A  = t ) ,  the Poschl-Teller potential behaves as -xP2 
[ - (x - ~ / 2 a ) - ' ]  for x - 0 (x - 7r/2a), and some problems are known to arise for such 
highly singular potentials (Case 1950). Hence, the family of Poschl-Teller potentials 
cannot be enlarged so that ( c l ~ - m 3 m ' ( x )  and (cl(nm,m)(x) are wavefunctions corresponding 
to some potential of the family. Such functions must therefore be considered as 
unphysical. 

In conclusion, a relation has been obtained between the solutions of the first 
Poschl-Teller equation and the rotation matrices at the cost of adding to the former 
three replicas of the whole set, as well as some unphysical functions. 

3. The so(4) potential algebra of the Poschl-Teller potentials and its embedding into 
SO(492) 

The Barut et al (1987a) procedure for deriving the Poschl-Teller potential algebra was 
based upon the algebraic version (Miller 1964,1968, Kaufman 1966) of the factorisation 
method (Infeld and Hull 1951). However, the latter proves to be unsuitable as a 
starting point for the construction of the semisimple dynamical potential algebra that 
we shall carry out in the next section. The ladder operators, raising or lowering the 
energy eigenvalue for a given potential, indeed result from a type E factorisation, 
which, according to Miller's approach, can be only indirectly algebraised giving rise 
to a non-semisimple Euclidean algebra. We will therefore use an alternative procedure, 
relying on some known properties of the rotation matrices. 

Let us start with a brief review of the so(4) Lie algebraic approach to the rotation 
matrices. As is well known, the complex conjugate rotation matrices D',*.m can be 
obtained from the solid hyperspherical harmonics (Biedenharn and Louck 1981), i.e. 
the homogeneous solutions of degree N = 2j of the four-dimensional Laplace equation: 

v29Nm,m(U) = 0 (3.1) 

U.V9""(U) = N 9 N m , m ( U ) .  (3.2) 
Here U denotes the set of coordinates U,, p = 1 ,  . . . , 4 ,  V2 = a,a,, and U * V = u,d,, 
where a, = a/au,, and there is a summation over dummy indices. 

If we factor out the homogeneous part as follows: 

% / N m ' m ( U )  = N Y N m , m ( U )  u = ( u,u,) l'* (3.3) 

then the remaining factor, the hyperspherical harmonic YNm"(u) ,  is defined on the 
unit sphere S3. By applying the transformation 

u1 = u sin 4~ sin t (  y - a) 

u 3 = u  cos$ s in ; (y+a)  

u2 = U sin $ cos t( y - a )  

uq=u cos$ c o s t ( y + a )  
(3.4) 

YNm"(u)  can be rewritten in terms of Euler angles as follows: 

Y N m ' m ( U ) =  Y N m ' m ( a ,  P, 7) = ( - 1 ) ' - ~ [ ( 2 j +  1 ) / 2 ~ ~ 1 " ~ ~ L , , - m ( a y ,  P, (3.5) 

(3.6) 

From (3.1)-(3.3), the hyperspherical harmonics YNm.,,,( U) satisfy the equation 

@ Y N m ' m ( U )  = N ( N + 2 )  Y N m ' m ( U )  

where 
@ = ; L ~ , , L ~ ~ =  - U ~ V * + ( U . V ) * + ~ U - V  (3.7) 
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is the Casimir operator of the so@) algebra, whose generators L,, = - L,, = (L,,)+ are 
defined by 

(3.8) L,, = -i( u,d, - u,a,) 

and satisfy the commutation relations 

[L,Y, L, “ 1 = i(6,, L,” - 6,” L”, - a,, L,” + 6,” L,, 1. (3.9) 

The ( N  + 1)*  functions YNm m (  U), corresponding to a given N value, form a basis 
for an so(4) irrep [NO]. The indices m’ and m (m’,  m = -$N, - iN+ 1 , .  . . , i N )  label 
the row of this irrep, or, more precisely, the row of the irrep ( j , j )  of the isomorphic 
su(2)Osu(2) algebra, corresponding to the chain su(2)Osu(2) = u ( l ) O u ( l ) .  The 
su(2)Osu(2) generators J ,  = J:, K, = K,’ are defined in terms of L,, by 

J I =1(1 2 2El~kL]k - Lt4) Kt f ( iEykL]k  + L14) (3.10) 

where Latin indices run over 1, 2,3, and Eyk is the antisymmetric tensor. They satisfy 
the commutation relations 

[ J I ,  41 = iEykJk rK1, K J l = i E y k K k  IJI, KJl = ( 3 . 1 1 )  

and their action on the functions YNm ,,,(U) is that of standard angular momentum 
operators. 

By using (3.4), (3.7), (3.8) and (3.10), the operators 

Jo = J3 J ,  = J, * iJ2 KO= K, K ,  = K1 *iK2 (3.12) 

and the so(4) Casimir operator @ can be rewritten in terms of the Euler angles as follows: 

(3.13) 
Jo = -id, 

KO = ia, 

J ,  = e*”(i cot p a, * d, - i cosec P a,,) 

K, = -i cosec /3 d,  F 8, + i cot /3 d,) 

and 

CP = 4 J 2  = 4 K 2  

=4[-a& -cot P 8, -cosec2 ~ ( d : ,  -2  cos P ai,+a:,)]. (3.14) 

From (3 .5) ,  their action on the complex conjugate rotation matrices is given by 

JOD’,’ ,(a, P, Y) = ”DL m ( a ,  P, Y) 
J*DJ,*, , , (~,  P, ~ ) = [ ( j ~ m ‘ ) ( j *  m ‘ + l ) 1 ’ ’ * ~ ’ , * , 1 , ~ ( a ,  P, Y) 

(3.15) 
KODJ,*m(a,P, Y ) = - ~ D J , * ~ ( ~ , P ,  Y) 

K+DJm*m(Q, P, ~ ) = - [ ( j * m ) ( j ~ m + 1 ) I ’ ” D ’ , * , m ~ l ( ~ , P ,  Y) 

and 

J ~ D J , * ~ ( ~ , P ,  Y ) = K ’ D J , * ~ ( ~ , P ,  ~ ) = j ( j + 1 ) ~ J , * m ( a , ~ ,  7 ) -  (3.16) 

After these preliminaries, it is now straightforward to construct the so(4) Poschl- 
Teller potential algebra. From (2.11), it follows that its generators z,” can be obtained 
from L,, by the similarity transformation 

(3.17) i,, = (sin p)l’*L,,(sin ~ 1 - l ’ ~  
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combined with the change of variables (2.4), and that the same is true for the generators 
1 and k, of the isomorphic su(2)Osu(2) algebra. The results can be written as 

Jo = -id, 

j ,  = e*'"[ F (2a)-'d, - i cot(2ax)d, - i cosec(2ax)~, 1 4  cot(2ax)l 

KO = id, 

K, = eTFIy[ i (2a)-'a, - i  cosec(2ax)a, - i  cot(2ax)a, ~4 cot(2ax)l. 

As can be easily checked, the operators (3.13) satisfy the hermiticity properties Jo' = 

J o ,  J+T = J,, KOt = K O ,  = K ,  with respect to the measure sin p d a  d p  dy, while the 
operators (3.18) have similar properties when the measure is replaced by dx d a  dy, 
as it should be. 

From (2.8), the action of the operators (3.18) on the extended wavefunctions (2.11) 
is given by 

j0qjlm sm)(x, a, y )  = m'.\IILm *"(x, a, y )  

- 

(3.18) 

(3.19) 

K + ~ j l " , ~ ) ( x ,  a, ~ ) = - [ ( m f + m + n ) ( m ' - m + n + 1 ) 1 " 2 ~ ~ m ' ~ m - " ( x ,  a, y )  

and similar relations for j -  and k- ,  resulting from their hermiticity properties. Hence, 
the generators of the potential algebra so(4) = su(2)Osu(2) connect together the eigen- 
states associated with the same eigenvalue A,,, given by (2.9), but with different 
potentials corresponding to the sets of quantised potential strengths (m', m), (m'i 1, m) 
and ( m ' ,  m * 1). All such states belong to a single so(4) irrep [NO], where N = 2m'+ 2n. 
Moreover, after substituting -id, and -id, for m' and m respectively, the Poschl-Teller 
Hamiltonian H, as defined in (2.1), is essentially the so(4) Casimir operator, since 

j 2 = g 2 =  M(2hZa2)-'H-$. (3.20) 

We would like now to enlarge the so(4) algebra by including some operators 
changing A,,, but keeping m' and m fixed. If they are to generate the whole spectrum 
corresponding to a given potential, from (2.8) they must raise or lower j by one unit, 
or, in other words, give rise to transitions between the so(4) irreps [NO] and [ N * 2,0], 
or between the su(2)Osu(2) irreps ( j ,  j )  and ( j *  1, j *  1). Hence, they must transform 
under the so(4) irrep [20], or the su(2)Osu(2) irrep (1 , l ) .  

As suggested by Barut et a1 (1987a), so(4) can be extended to the non-compact 
algebra s0(4,2). However, the extra generators separate into an so(4) scalar, namely 
the so(2) generator, and two irreducible tensors transforming under the so(4) = su(2)O 
su(2) irrep [lo] = (f, i). Hence, so(4,2) is not a suitable candidate for the dynamical 
potential algebra of the Poschl-Teller potentials. 

The so(4) algebra can also be embedded into s1(4,R)=so(3,3) (Dothan and 
Ne'eman 1966, Ne'eman and SijaEki 1979, SijaEki and Ne'eman 1985). This time, the 
extra generators transform under the so(4) irrep [20], so that sl(4, R) provides us with 
a dynamical potential algebra for the Poschl-Teller potentials. In the next section, we 
shall first review the construction of the sl(4,R) dynamical algebra of the rotation 
matrices, then apply our results to the Poschl-Teller potentials. 
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4. The sl(4, R) dynamical potential algebra of the Poschl-Teller potentials 

From the general study of the multiplicity-free unitary irreps of x ( 4 ,  R), the double- 
covering group of SL(4, R) (Ne’eman and SijaEki 1979, Friedman and Sorkin 1980, 
SijaEki and Ne’eman 1985), it is known that sl(4, R) may be considered as a dynamical 
algebra for the rotation matrices. The relevant irreps actually belong to the ladder 
series. Since, unfortunately, there is some confusion about the E ( 4 ,  R) irreps in the 
literature, we feel it useful to carry out in the present section an independent and 
self-contained construction of the sl(4, R) irreps, relevant to the study of the rotation 
matrices, in a form directly applicable to the Poschl-Teller potentials. 

The sl(4, R) algebra is generated by the so(4) operators L,,, introduced in § 3, and 
by some extra operators S,, = S,, = (S,y)i, p, v = 1, . . . ,4 ,  such that S,, = 0. Their 
commutation relations are given by (3.9), and by 

[ L,, , S,,,8] = i( S,,S,,. + S,,,S,,. - SypL.SPy, - 6,,.S,,.) 

[S,,, S,,,,] = -i(8,,,Luv,+ 6,,jL,,3+ Sy,,LPv,+ S,,,L,,.). 
(4.1) 

In the Cartan decomposition of s1(4,R), so(4) is the maximal compact subalgebra, 
while the nine independent non-compact generators S,, belong to the orthogonal 
complementary subspace. 

Note that sl(4, R) is isomorphic to the so(3,3) algebra, whose generators A A B  = 
- A B A  = (AAB)’, A, B = 1, .  . . ,6 ,  may be defined by 

A . . =  E . . J  
Y ~k 

A3+i,3+j = - E i j k K k  (4.2) 
Ai.3+j = -A3+j,i = i(Sij S$44 - E i j k S k 4 )  

where, as before, Latin indices run over 1,2,3.  Their commutation relations are 
given by 

[AAB, ACD] = i(gACABD - gADABC -gBCAAD + gBDAAC) (4.3) 
where the metric tensor is gAB = diag(S1, +1, +1, -1, -1, -1). The operators A, and 
A3+i,3+j generate the maximal compact subalgebra so(3) 0 so(3). The corresponding 
groups SL(4, R) and S0(3,3)  satisfy the isomorphism relation SL(4, R)/Z2 = S0(3,3),  
where Z2 is a two-element subgroup of SL(4, R). 

Instead of the sl(4, R) generators L,, and S,, (with S,, = 0), it is convenient to 
use the su(2)Osu(2) generators J i ,  K i ,  or J o ,  J,, K O ,  K,, defined in (3.10) and (3.12) 
respectively, and the components T,,, (T, 7 = $1, 0, -1 of an irreducible tensor of rank 
( 1 , l )  with respect to su(2)0su(2) .  Its highest weight component is defined by 

T+,,+, = %Al4+ iAls+iA24-  A2A 

[ J o ,  T,,1= UT,, 

[KO, T,,1= TTU, [K, ,  T,,l=[(lF7)(2*7)11/2T,,r*i. 

(4.4) 
and the remaining ones can be obtained from the commutation relations 

[ J * ,  Tu71 =[(1r(.)(2*:a)11/2T,*l,, 
(4.5) 

Those of two operators T,, and T,,,, are given by 

[T,,, T,,,,]=(-l)‘S,_..JZ(I U, 1 U’(1 (T+(T’)J,+, 

+(-1)‘8,,-,&(1 7, 17’11 7 + 7 ‘ ) K 7 + +  (4.6) 
where ( , I  ) denotes an SU(2) Wigner coefficient, Jil = T JJa, and K,l = F &/a. 
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On the unit sphere S3 ,  where the so(4) generators L,, are realised by the first-order 
differential operators (3.8), the non-compact generators S,, can be realised by the 
operators 

s,, = (1/2i)[@, U,U,l+ vcu,u,-$s,J (4.7) 

obtained by applying Gell-Mann’s decontraction procedure (Dothan et uZ1965, Dothan 
and Ne’eman 1966). In (4.7), @ is the so(4) Casimir operator, defined in (3.7), and 7 
is a parameter, which may take any real value (including zero) and will serve to label 
the sl(4, R) irreps. Note that the operators (4.7) are also first-order differential operators, 
since they can be rewritten as 

S,, = u,u,L,, + u,u,L,, + (a? - i)(4u,u, - (4.8) 

By using the transformation (3.4), where U = 1, the sl(4,R) generators can be 
expressed in terms of the Euler angles a, p, y. The results for J o ,  J , ,  KO, K ,  are given 
in (3.13), while those for Tu, are 

It can be easily checked that these operators satisfy the commutation relations (4.5) 
and (4.6), as well as the hermiticity property 

(‘TuT)‘=(-l)r+TT-u,-T (4.10) 

with respect to the measure sin p d a  d p  dy. 
It is now straightforward to determine the action of the operators (4.9) on the 

hyperspherical harmonics, written in terms of Euler angles. Application of the Wigner- 
Eckart theorem with respect to su(2)Osu(2) indeed leads to the relation 

TuiKj,m’,m(a, P, Y )  

where ( j ’ l (  T/I j) denotes a reduced matrix element. From (3.5) and the known expression 
of the rotation matrices in terms of a, p, y (Biedenharn and Louck 1981), the latter is 
easily calculated for j ’ = j + l ,  j and j - 1 .  By setting m ’ =  m = j ,  and V = T =  1 or 0 in 
(4.11), we indeed obtain 

and 

From (4.10) and (4.12a), we also get 
(j- 1llTllj) = -(i j+$q)[(2j+ 1)/(2j-  l)]’” (4 .12~)  
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Equations (3.5) and (4.11) finally lead to the following result for the action of T,, 
on the rotation matrices: 

j + l  

TUrDZsm(a,  p, -y)=(-l)’-T(2j+l)-’’2 ( 2 j ‘ + 1 ) ” 2 ( j r ~ ~ T ~ ~ j ) ( j m r ,  1 a l j ‘ m + a )  
j ’ = j - l  

x ( j m ,  1 -71jr m-T)~$+u,m-T(a,  P, 7 ) .  (4.13) 
By taking (4.12) into account and by replacing the SU(2) Wigner coefficients by their 
value, one can obtain explicit expressions for the action of the operators T,, on the 
rotation matrices. In appendix 1, it is shown that such expressions lead to differential 
equations and recursion relations for the functions d’,. ,(p), some of which were 
derived before by other procedures. 

From (3.15) and (4.13) it is obvious that, with respect to sl(4, R), the set of rotation 
matrices separates into two subsets, corresponding to all integral or half-integral values 
ofj, respectively. Both carry an sl(4, R) unitary irrep of the ladder series % I a d d (  j o , j o ;  v), 
characterised by a real parameter 7, and the minimumj value, min(j) = j o .  Their ( j ,  j )  
or [NO] content is 

3ladd(o, 0; 7): { ( j , j ) )  = { ( o , ~ ) ,  (1, I) ,  ( ~ 2 1 , .  . .) 

and 
{ [ ~ 0 1 ) =  {[OOI, ~201, [401, . . .I ( 4 . 1 4 ~ )  

(4.14b) 
respectively. Note that, for %Iadd(O, 0; v), there is a discrepancy between the results 
given by Ne’eman and SijaEki (1979) and those of SijaEki and Ne’eman (1985). 
Equation ( 4 . 1 4 ~ )  agrees with the former. 

In analogy with su(4), for sl(4,R) we may define three independent Casimir 
operators G2, G3 and G4,  of degree 2 ,3  and 4 with respect to the generators, 
respectively. As shown in appendix 2, they are given by 

( 4 . 1 5 ~ )  
(4.15b) 

G4 = $[3(L,,L”,L,,L,, + 4S,,S”,L,,L,, + 2S,”L”,S~,LP, + ~ , y s ” ~ ~ ~ p ~ p , )  
-24G:-32Gz- 12OL,,L,,]. ( 4 . 1 5 ~ )  

When replacing L,, and S,, by their realisations (3.8) and (4.8), and taking into 
account that U = 1, after some straightforward but lengthy calculations, it can be shown 
that, on the unit sphere S 3 ,  all three Casimir operators assume unique numerical values, 
given by 

G2 = -3[ 1 + ( $ v ) ~ ]  ( 4 . 1 6 ~ )  

G3=-&ivG2=$v[1+(av)2]  (4.166) 
Gq=;Gz(G2+4)= -&1+(av)2][1 -3(av)*]. ( 4 . 1 6 ~ )  

By proceeding as in the sl(3, R) case (Weaver and Biedenharn 1972, Biedenharn et a1 
1972, SijaEki 1975), these values may be compared with the eigenvalues of the corre- 
sponding su(4) Casimir operators, given in appendix 2. This enables us to assign the 
(generalised) Young pattern labels [pqrO], p = -2 - t i7  and q = r = 0, to both irreps 
(4.14). 
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By using (2.11), it is straightforward to go from the sl(4, R) algebra corresponding 
to the rotation matrices to that associated with the Poschl-Teller potentials. In addition 
to the operators LPv, or To, f*, io, I?,, defined in (3.17) and (3.18) respectively, the 
latter includes the generators 

= (sin P)'"s,,(sin p)-'" (4.17) 

where use must be made of (3.4) and (4.8). The operators PUT, as obtained from Tu, 
by a similar procedure, can be written as 

f,',,' -1 - 2  e*l'"-Y' [i(2a)-' sin(2ax)aX*a, +ay+i-a77+$(2i-77) cos(2ax)l 

f*,,T1 =te*"e+~'[- i (2a)- '  sin(2ax)aX*a, i a Y + i - $ T  -$(2i-77) cos(2ax)l 

f*l,o = 2 ~ ' ' ~  e* 'a [~ i (2a) -1  cos(2ax)aX + cosec(2ax)a, + cot(2ax)ay 

*ti cosec(2ax) *$(2i- 7) sin(2ax)l (4.18) 

= 2-"2 eT1y[ii(2a)-' cos(2ax)~, + cot(2ax)d, + cosec(2ax)d, 

+ t i  cosec(2ax) ~ F ( 2 i  - 7 )  sin(2ax)l 

= i(2a)-' sin(2ax)aX +a(2i- 7 7 )  cos(2ax). 

It can be checked that the operators jo,  j , ,  KO, 8, and fuT satisfy relations similar to 
(4.5) and (4.6), and that fu7 fulfils the hermiticity property (4.10) with respect to the 
measure dx  d a  dy. 

The action of the operators fuT on the extended wavefunctions (2.11) can be derived 
from that of Tu, on the (complex conjugate) Wigner rotation matrices DLrm(a, p, y ) ,  
given in (4.13). The results are 

(x, f f ,  Y) f q, ' ," ' .m) 
U T  

n - u + l  

= (-1)'- 1 c, . (m'+n)(m'+n m', 1 (+ Im '+n '+a  "+a) 
n ' = n - u - l  

x ( m ' + n  m, 1 -Tlm'+n'+L+ m - r ) ~ ~ m ' + ' , m - - T )  (x, f f ,  Y) (4.19) 

where c,,(m'+ n )  is given by 

cn, (m'+  n) 
= - [ i ( m f + n ) + a r l l [ ( 2 m ' + 2 n + l ) / ( 2 m ' + 2 n  - I)]''* 

= -aT if n' = n - U (4.20) 

= [ i ( m f + n + " - a ~ 1 [ ( 2 m ' + 2 n + 1 ) / ( 2 m ' + 2 n + 3 ) ] ' ' *  if n'= n - a + 1 .  

From (4.19), it follows that the operator f o 0  generates transitions between the 
extended wavefunctions V',"'," and V\m'3m), n'= n - 1, n, n + 1, corresponding to the 
same potential. Energy raising and lowering operators %,,, 2,,, corresponding to the 
ladder operators of the factorisation method (Infeld and Hull 1951), can be easily 
constructed in the enveloping algebra of sl(4, R). A possible choice is 

%,, = ( 2 ~ + , ) t = ( n + 1 ) ( 2 m ' + n + 1 ) f ~ , o + ( 2 m ' + n + l ) f + l , o ~ ~ l - ( n + l ) T ~ l , o J + l  (4.21) 

where 

if n' = n - U -  1 

. .  

9n q , ( m ' , m )  
n (x, f f ,  7 )  

=[-i(m'+n+1)+a77][(n+1)(2m'+n+1)(2m'+2n+l)(mf-m+n+1) 

~ ( m ' + m + n + ~ ) ] ' ' ~ ( 2 m ' ~ 2 n + 3 ) - ' ' * ~ " , " + ' ; ~ ' ( ~ ,  a, y )  (4.22) 
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and 
q~ ( m ' ,  m ! 

n (x, Y )  
= [ i ( m ' + n ) + f q ] [ n ( 2 m ' + n ) ( 2 m r + 2 n  - l ) ( m r - m + n ) ( m ' + m + n ) ] ' ' *  

x (2m '+2n+  1)-1'2Y!,T'im'(x, (Y, y ) .  

(4.23) 
Raising and lowering operators %,2, which do not refer to the index n of the function 
being operated upon, can be obtained from (4.21) by considering the operator 

J ( J ' + $ )  1 / 2 - t  (4.24) 
whose eigenvalue, corresponding to qJ! ,m'3m) ,  is j = in'+ n. They are given by 

% =9'= f ~ , o ( ~ - ~ o + l ) ( . f + ~ o + l ) +  f+1,0:-1(j+.?O+l)- f-1,of+l(j-j0+1) 

and act on V(n"9m' in the same way as %,, and 2,,, respectively. 

- -  

(4.25) 

5. Conclusion 

We have proved that all the eigenstates, corresponding to the family of Poschl-Teller 
potentials with quantised potential strengths (m ' ,  m )  differing by integers, belong to 
the carrier space of a single sl(4,R) ladder unitary irrep. For integral values of m' 
and m, this irrep is 591add(0, 0; q) ,  while for half-integral values, it is Eladd(+, f; 7). In 
terms of the original strengths K and A, this means that all the eigenstates, corresponding 
to potentials with half-integral values of K and A such that K + A  is odd (even) and 
K - A  even (odd), belong to the carrier space of DIadd(O, 0; q )  (D'""($,f; 7)). As 
stressed in 5 2, the carrier spaces of both ladder irreps actually contain four copies of 
the potential family eigenstates in addition to some unphysical states. 

In the following paper (Quesne 1988), we shall specialise the present analysis to 
the subfamily of one-parameter symmetrical Poschl-Teller potentials and contrast it 
with another approach. In a forthcoming publication we also plan to construct 
dynamical potential algebras for the second family of Poschl-Teller potentials, as well 
as for the Rosen-Morse and Eckart potentials. 

Appendix 1. Differential equations and recursion relations for dJ,.,(P) 

The purpose of this appendix is to illustrate the usefulness of the set of relations (4.13) 
by deriving both differential equations and recursion relations for dJ,,,(P) from their 
explicit form. 

Since q may take any real value, the q-independent and 7-dependent terms may 
be separately equated on both sides of (4.13). After making the substitution 

(Al . l )  
and taking (4.9) and (4.12) into account, the 7-independent terms give rise to differential 
equations for dk , , (P ) ,  while the q-dependent ones lead to recursion relations for the 
same functions. 

(2j+ l)[-sin p do * ( m ' -  m)+ 1 -cos /3]dJm.m(p) 

DJ,,((Y, p, y )  = exp(im'cY)dJ,,,(p) exp(imy) 

For U = T = *l, for instance, we obtain the equations 

= [ ( j * m ' + l ) ( j * m ' + 2 ) ( j ~ m + + ) ( j r m + 2 ) 1  l / 2  d m S * l , m T 1 ( P )  j + l  

(A1.2) 1 / 2  1-1 - [ ( ~ ~ m ' - l ) ( j ~ m r ) ( j * m - l ) ( j * m ) l  dms*1.mF1(P) 
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and the relations 

j ( j +  1)(2j+ 1)(1 -COS p ) d ; , , ( p )  
= j [ ( j *  m f +  ~ ) ( j *  m ’ + 2 ) ( j ~  m +  l ) ( j r  m+2)1 1 / 2  d m , * i , m i i ( P )  j + l  

- (2j+ l ) [ ( j +  m’)( j+= m’+ l ) ( j *  m ) ( j F  m + I ) I ~ ’ ~ ~ L ~ ~ , , , , ~ ~ ( ~ )  

+ ( j + l ) [ ( j ~ m ‘ - l ) ( j F m ’ ) ( ~ ~ m - l ) ( j * m ) l  1 / 2  d m . i l , m T l ( P ) *  j - I  (A1.3) 

Seven additional differential equations and recursion relations can be similarly derived 
for theremain ingvaluesof (u ,~) :  ( u = * l ,  ~ = F l ) , ( c ~ = * l ,  ~ = O ) , ( u = O , r = * l ) a n d  

The nine differential equations so obtained can of course be proved by other 
(u=O, 7 ’0 ) .  

procedures. For instance, that corresponding to U = r = 0, 

(2j+ l)(sin p do +cos p)djm,,(p) 
= [ ( j - m ’ + ~ ) ( j + m ’ + l ) ( j - m + l ) ( j + m + l ) I  1 / 2  d, , , (P )  j + l  

- [ ( j  - m’) ( j+  m‘ ) ( j  - m ) ( j +  m)]’/*dL:L(p) (Al.4) 

results from combining two differential equations given by Schneider and Wilson (1979). 
On the other hand, all nine recursion relations are but the explicit form of the 

Clebsch-Gordan series 

d $ m ( p ) d i J p ( p )  =C ( j  m‘, A p‘Ij ’  m ’ + p ) ( j  m, A p l j ’  m+p)d i ,+ , , ,m+, (P )  
j ’  

(A1.5) 

where A = 1, p ’ =  u and p = - r .  

Appendix 2. Casimir operators of sl(4, R) 

The purpose of this appendix is to prove equations (4.15a), (4.15b) and (4.15c), giving 
explicit expressions for the sl(4, R) Casimir operators Gkr k = 2,3,4.  

The su(4) algebra is spanned by the operators 

E,, = g,” -$,Ygp,, p, v = 1, .  * . , 4  (A2.1) 

where = ( gV,)’ are u( n )  generators, satisfying the commutation relations 

[ggV, gpYl = &,,gpd- ap”,gp,v.  (A2.2) 

By separating the second-rank tensor E,” into its antisymmetrical and symmetrical 
parts, we obtain the operators 

(A2.3) LPy = -Lug = (L , , )+  = --i(E,” - Eu,)  

and 

S,, = S,, = ( SWv)’ = E,,, + E,, (A2.4) 

where S,, = 0. They form an alternative basis of su(4), and their commutation relations 
are given by 

(A2.5) 
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Comparison between (A2.5) and the commutation relations (3.9) and (4.1) of the 
sl(4, R) generators shows that the latter can be obtained from the former by changing 
S,, into -ispu. Hence, the same substitution, carried out in the su(4) Casimir operators, 
will yield those of sl(4, R). 

A set of independent su(4) Casimir operators is given by 

k = 2 , 3 , 4  (A2.6) 

where the summation is carried out over the k !  permutations 7r of the indices 
p l ,  p 2 , .  . . , pk. They can be expressed as 

k - l + r r  
Gk = E  ( - l )  E f i ~ , r r ( ~ ~ ) E ~ 2 , w ( ~ 2 )  * . . E / * ~ . x ( ~ k )  

(A2.7) 

in terms of the commonly used operators 

G k =  E11~/12E1”21*3 . . . E~~~~ k = 2,3,4.  (A2.8) 

From the well known eigenvalues of G k  (Louck 1970), it can be shown that those of 
Gk, corresponding to an su(4) irrep characterised by the Young pattern labels [pqro], 
are given by 

g2(p, q, r) = $ ( 3 p 2 - 2 p q - 2 p r + 3 q 2 - 2 q r + 3 r 2 +  12p+4q-4r)  

gdp, 9, y )  =a(P - 4 - r)(p - 4 + r+2) (p  + 9 - r + 4 )  

g,(p, q, r )  =$(9p4-12p3q- 1 2 p 3 r - 4 2 p 2 q 2 + 6 0 p 2 q r - 4 2 p 2 r 2 - 1 2 p q 3  

+60pq2r+60pqr2- 12pr3+9q4- 12q3r-42q2r2- 12qr3 

+9r4+72p3-216p2q -72p2r-264pq2+720pqr 

- 168pr2 + 24q3 + 24q2r - 24qr2 - 24r3 + 192p2 - 896pq + 256pr 

-192q2+ 1024qr-192r2+192p-704q+704r). 

(A2.9) 

Substituting f(S,, + iLPv)  for E,” in (A2.6) and using the commutation relations 
(A2.5), we obtain for G k ,  k = 2,3,4,  the alternative expressions 

G2 =a(L,YL,Y+S,YS,Y) G3 = i(-3Sp,L,,L,, + S,,S”,S,,) 

G4 = i%3(L,vLu,L,L,, - 4~,VSV,L,L,, - 2S,”L,€SE,L,, (A2.10) 

+ ~,,,S,~s~,~,,) - 24G: - 3262 - 12oL,,L,,]. 

It only remains to replace S,, by -ispv in (A2.10) to get the searched-for relations (4.15). 
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